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Motivation

1950s - Perceptron
Gradient descent

1960s - Multilayer networks
1980s - Backpropagation

Neuroscience vs. Neural Networks



Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ @€ 10711
e Connections per neuron ~ 1045
e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

= Much parallel computation



Properties of neural nets:
e Many neuron-like threshold switching units
e Many weighted interconnections among units
e Highly parallel, distributed process

e Emphasis on tuning weights automatically



-
"o .
- -
- ‘_‘J- .5“' S
i e - -

-

."‘...
" -
- -

T .

- —

c"'." —-";

ALVINN - Pomerleau 1993

-



Sharp
Ahead Right

Straight

Sharp
Left

E
m.m
)=
0U
™
S
- f=)
-+
®
®
®

Input Retina

30x32 Sensor




Perceptron
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i=0 " SeEl
-1 otherwise

1 fwg+wizi+--+wpx, >0

O 4550 w5l ] = .
(21 n) —1 otherwise.

Sometimes we’ll use simpler vector notation:

1 ifw-£2>0

o(T) = |
—1 otherwise.



Decision Surface of a Perceptron

(D)

Represents some useful functions

e What weights represent g(z1,22) = AND(x1,22)7?

But some functions not representable
e All not linearly separable

e Therefore, we’ll want networks of these...



Perceptron Training Rule

w; — w; + Aw;

where
Aw; = n(t — o)x;

Where:
e t = ¢(T) is target value
e 0 i1s perceptron output

e 77 is small constant (e.g., 0.1) called learning rate



Perceptron Training Rule

Can prove it will converge if
e Training data is linearly separable

e 7 sufficiently small



Gradient Descent
To understand, consider simpler linear unit, where

0= Wy TWiL1 T """ T WnTa

Let’s learn w;’s that minimize the squared error
A

E|w] = % Z(td — 0g)?

deD

Where D is set of training examples
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Gradient:
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Gradient Descent

GRADIENT-DESCENT(training_examples,n)
Initialize each w; to some small random value

Until the termination condition is met, Do
e Initialize each Aw; to zero.

e For each (Z,t) in training_examples, Do
— Input instance Z to unit and compute output o
— For each linear unit weight w;, Do

e For each linear unit weight w;, Do



Summary

Perceptron training rule guaranteed to succeed if

e Training examples are linearly separable

e Sufficiently small learning rate 7

Linear unit training rule uses gradient descent

e Guaranteed to converge to hypothesis with minimum
squared error

e Given sufficiently small learning rate n
e Even when training data contains noise

e Even when training data not separable by H



Batch vs. Incremental Gradient Descent

Batch Mode Gradient Descent:

Do until convergence
1. Compute the gradient V Ep []
2. W+— W — ’I’]VED[’IE]



Incremental Mode Gradient Descent:

Do until convergence

For each training example d in D
1. Compute the gradient V E (]
2. W+— W — ’I’}VEd[’LU]

Epld] = 5 3 (ta — 0a)?
deD

Bali) = 3 (ta — 04’

Incremental Gradient Descent can approximate Batch
Gradient Descent arbitrarily closely if n» made small enough
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Sigmoid Unit

net =2 w; x; I

Far 0 = G(net) = —

1l +e¢

o(x) is the sigmoid function

1
l1+e %

Nice property: 22Z) — 5(z)(1 — o(z))



We can derive gradient descent rules to train
e One sigmoid unit

e Multilayer networks of sigmoid units —
Backpropagation



Error Gradient for a Sigmoid Unit
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But we know:

0og _ do(netq)
Onety onety

onety B 8(117 - fd)

So:

OF
50 — Y (ta — 04)oa(1 — 04)Ti,q

deD

Let: 0 = 32£k
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Backpropagation Algorithm

Initialize all weights to small random numbers
Until convergence, Do

For each training example, Do
1. Input it to network and compute network outputs
2. For each output unit &

6k e Ok(l — Ok)(tk po— Ok)
3. For each hidden unit A
bh —on(l—o0n) > whibs

k€outputs

4. Update each network weight w; ;
W;,j — Wi j + Aw; ;

where Awi,j — 77(53':132',3’



More on Backpropagation

Gradient descent over entire network weight vector
Easily generalized to arbitrary directed graphs

Will find a local, not necessarily global error minimum

— In practice, often works well
(can run multiple times)

Often include weight momentum o

Aw; j(n) = né;z;; + alw; j(n — 1)
Minimizes error over training examples
— WIll it generalize well to subsequent examples?

Training can take thousands of iterations — slow!

Using network after training is very fast



Learning Hidden Layer Representations
Inputs Outputs
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A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned?




Learned hidden layer representation:

Input Hidden Output
Values
10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 97 .27 — 00100000
00010000 — 99 97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001
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Training

Hidden unit encoding for input 01000000
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Training

Weights from inputs to one hidden unit
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Convergence of Backpropagation

Gradient descent to some local minimum
e Perhaps not global minimum...
¢ Add momentum
e Stochastic gradient descent

e Train multiple nets with different inital weights

Nature of convergence
e Initialize weights near zero
e Therefore, initial networks near-linear

e Increasingly non-linear functions possible as training
progresses



Expressiveness of Neural Nets

Boolean functions:

e Every Boolean function can be represented by network
with single hidden layer

e But might require exponential (in number of inputs)
hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error,
by network with one hidden layer

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers



Error
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Overfitting in Neural Nets

Error versus weight updates (example 1)
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Error versus weight updates (example 2)
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Overfitting Avoidance

Penalize large weights:

Z Z (tka — Oka)” +’YZ’wgz

de D k€outputs

Train on target slopes as well as values:

E(w E%Z Z (tkd—okd) + u Z (gt:;

deD k€outputs jEInputs

Weight sharing
Early stopping
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Neurosclence vs.
Neural Networks

* Dendritic computing

* Heterogeneous neural architectures

e Connectonomics

* Retrograde signaling



Dendritic computation

Non-linear functions before the soma
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Cortex Cerebellum

Heterogeneous Architectures



Connectonomics

Above: diffusion tensor imaging



Retrograde signaling

Controversial hypothesis for long-term potentiation
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