Neural Networks

Presented by Robert Gens

Slides adapted from Pedro Domingos

Neural Networks in Current Events

"How Many Computers to Identify a Cat? 16,000" NYT 6/25/12

Google image search (Facebook, ...)

Speech Recognition (all companies)

Outline

- Motivation
- 1950s Perceptron
- Gradient descent
- 1960s Multilayer networks
- 1980s Backpropagation
- Neuroscience vs. Neural Networks

Connectionist Models

Consider humans:

- Neuron switching time $\sim .001$ second
- Number of neurons $\sim 10^{10} 10^{11}$
- Connections per neuron $\sim 10^{4-5}$
- Scene recognition time $\sim .1$ second
- 100 inference steps doesn't seem like enough
- ⇒ Much parallel computation

Properties of neural nets:

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

ALVINN - Pomerleau 1993

Perceptron

$$o(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Decision Surface of a Perceptron

Represents some useful functions

• What weights represent $g(x_1, x_2) = AND(x_1, x_2)$?

But some functions not representable

- All not linearly separable
- Therefore, we'll want networks of these...

Perceptron Training Rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t - o)x_i$$

Where:

- $t = c(\vec{x})$ is target value
- o is perceptron output
- η is small constant (e.g., 0.1) called *learning rate*

Perceptron Training Rule

Can prove it will converge if

- Training data is linearly separable
- η sufficiently small

Gradient Descent

To understand, consider simpler linear unit, where

$$o = w_0 + w_1 x_1 + \dots + w_n x_n$$

Let's learn w_i 's that minimize the squared error

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Where D is set of training examples

Gradient Descent

Gradient:

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

I.e.:

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient Descent

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_{d} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d})$$

$$\frac{\partial E}{\partial w_i} = \sum_{d} (t_d - o_d) (-x_{i,d})$$

Gradient Descent

Gradient-Descent $(training_examples, \eta)$

Initialize each w_i to some small random value

Until the termination condition is met, Do

- Initialize each Δw_i to zero.
- For each $\langle \vec{x}, t \rangle$ in $training_examples$, Do
 - Input instance \vec{x} to unit and compute output o
 - For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$$

• For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- Even when training data contains noise
- \bullet Even when training data not separable by H

Batch vs. Incremental Gradient Descent

Batch Mode Gradient Descent:

Do until convergence

- 1. Compute the gradient $\nabla E_D[\vec{w}]$
- 2. $\vec{w} \leftarrow \vec{w} \eta \nabla E_D[\vec{w}]$

Incremental Mode Gradient Descent:

Do until convergence

For each training example d in D

- 1. Compute the gradient $\nabla E_d[\vec{w}]$
- 2. $\vec{w} \leftarrow \vec{w} \eta \nabla E_d[\vec{w}]$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$E_d[\vec{w}] \equiv \frac{1}{2}(t_d - o_d)^2$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

Multilayer Networks of Sigmoid Units

Sigmoid Unit

 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1+e^{-x}}$$

Nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$

We can derive gradient descent rules to train

- One sigmoid unit
- $Multilayer\ networks$ of sigmoid units \rightarrow Backpropagation

Error Gradient for a Sigmoid Unit

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_{d} (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right)$$

$$= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}$$

But we know:

$$\frac{\partial o_d}{\partial net_d} = \frac{\partial \sigma(net_d)}{\partial net_d} = o_d(1 - o_d)$$

$$\frac{\partial net_d}{\partial w_i} = \frac{\partial (\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d}$$

So:

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

Let:
$$\delta_k = -\frac{\partial E}{\partial net_k}$$

$$\frac{\partial E}{\partial net_{j}} = \sum_{k \in Outs(j)} \frac{\partial E}{\partial net_{k}} \frac{\partial net_{k}}{\partial net_{j}}$$

$$= \sum_{k \in Outs(j)} -\delta_{k} \frac{\partial net_{k}}{\partial net_{j}}$$

$$= \sum_{k \in Outs(j)} -\delta_{k} \frac{\partial net_{k}}{\partial o_{j}} \frac{\partial o_{j}}{\partial net_{j}}$$

$$= \sum_{k \in Outs(j)} -\delta_{k} w_{kj} \frac{\partial o_{k}}{\partial net_{j}}$$

$$= \sum_{k \in Outs(j)} -\delta_{k} w_{kj} \frac{\partial o_{k}}{\partial net_{j}}$$

$$= \sum_{k \in Outs(j)} -\delta_{k} w_{kj} o_{j} (1 - o_{j})$$

$$\delta_{j} = -\frac{\partial E}{\partial net_{j}} = o_{j} (1 - o_{j}) \sum_{k \in Outs(j)} \delta_{k} w_{kj}$$

Backpropagation Algorithm

Initialize all weights to small random numbers Until convergence, Do

For each training example, Do

- 1. Input it to network and compute network outputs
- 2. For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where $\Delta w_{i,j} = \eta \delta_j x_{i,j}$

More on Backpropagation

- Gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- Often include weight momentum α

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$$

- Minimizes error over *training* examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations → slow!
- Using network after training is very fast

Learning Hidden Layer Representations

A target function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned?

Learned hidden layer representation:

Input	Hidden					Output		
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

Training

Training

Training

Convergence of Backpropagation

Gradient descent to some local minimum

- Perhaps not global minimum...
- Add momentum
- Stochastic gradient descent
- Train multiple nets with different inital weights

Nature of convergence

- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions possible as training progresses

Expressiveness of Neural Nets

Boolean functions:

- Every Boolean function can be represented by network with single hidden layer
- But might require exponential (in number of inputs) hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers

Overfitting in Neural Nets

Overfitting Avoidance

Penalize large weights:

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} w_{ji}^2$$

Train on target slopes as well as values:

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} \left[(t_{kd} - o_{kd})^2 + \mu \sum_{j \in inputs} \left(\frac{\partial t_{kd}}{\partial x_d^j} - \frac{\partial o_{kd}}{\partial x_d^j} \right)^2 \right]$$

Weight sharing

Early stopping

Neuroscience vs. Neural Networks

- Dendritic computing
- Heterogeneous neural architectures
- Connectonomics
- Retrograde signaling

Dendritic computation

Non-linear functions before the soma

Heterogeneous Architectures

Connectonomics

Above: diffusion tensor imaging

Retrograde signaling

Controversial hypothesis for long-term potentiation

Summary

- Motivation
- 1950s Perceptron
- Gradient descent
- 1960s Multilayer networks
- 1980s Backpropagation
- Neuroscience vs. Neural Networks